
STREETGEN: IN-BASE PROCEDURAL-BASED ROAD GENERATION

Rémi Cura AB , Julien Perret A, Nicolas Paparoditis A

A Universite Paris-Est, IGN, SRIG, COGIT & MATIS, 73 avenue de Paris, 94160 Saint Mande, France
first name.last name@ign.fr

B Thales Training & Simulation SAS, 1 rue du Général de Gaulle 95523 Cergy-Pontoise, France

KEY WORDS: StreetGen, Street Modeling, RDBMS, Road Network, GIS database, kinetic hypothesys, Variable Buffer

ABSTRACT:

Streets are large, diverse, and used for conflicting transport modalities as well as social and cultural activities. Proper planning is
essential and requires data. Manually fabricating data that represent streets (street reconstruction) is error-prone and time consuming.
Automatising street reconstruction is a challenge because of the diversity, size, and scale of the details (∼ cm for cornerstone) required.
The state-of-the-art focuses on roads and is strongly oriented by each application (simulation, visualisation, planning). We propose a
unified framework that works on real Geographic Information System (GIS) data and uses a strong, yet simple hypothesis when possible
to produce coherent street modelling at the city scale or street scale. Because it is updated only locally in subsequent computing, the
result can be improved by adapting input data and the parameters of the model. We reconstruct the entire Paris streets in a few minutes
and show how the results can be edited simultaneously by several concurrent users.

1. INTRODUCTION

Streets are complex and serve many type of purposes, including
practical (walking, shopping, etc.), social (meeting, etc.), and
cultural (art, public events, etc.). Managing existing streets and
planning new ones necessitates data, as planning typically occurs
on an entire neighbourhood scale. These data can be fabricated
manually (cadastral data, for instance, usually are). Unfortunately,
doing so requires immense resources in time and people.

Indeed, a medium sized city may have hundreds of kilometers of
streets. Streets are not only spatially wide, they also are very plas-
tic and change frequently. Furthermore, street data must be precise
because some of the structuring elements, like cornerstones (they
separate sidewalks from roadways) are only a few centimetres in
height. Curved streets are also not adapted to the Manhattan hy-
pothesis, which states that city are organised along three dominant
orthogonal directions (Coughlan and Yuille, 1999).

The number and diversity of objects in streets is also particularly
challenging. Because street data may be used for very different
purposes (planning, public works, and transport design), it should
be accessible and extensible.

Traditionally, street reconstruction solutions are more road recon-
struction and are also largely oriented by the subsequent use of
the reconstructed data. For instance, when the use is traffic simu-
lation (Wilkie et al., 2012, Nguyen et al., 2014, Yeh et al., 2015),
the focus is on reconstructing the road axis (sometime lanes), not
necessarily the roadway surface. In this application, it is also
essential that the reconstructed data is a network (with topological
properties) because traffic simulation tools rely on it. However,
the focus is clearly to reconstruct road and not streets. Streets
are much more complex objects than roads, as they express the
complexity of a city, and contains urban objects, places, temporary
structures (like a marketplace). The precision of the reconstruction
is, at best, around a metre in terms of accuracy.

Another application is road construction for the virtual worlds or
driving simulations. In this case, we may simply want to create
realistic looking roads. For this, it is possible to use real-life civil
engineering rules, for instance using a clothoid as the main curve

in highway (McCrae and Singh, 2009a, Wang et al., 2014). When
trying to produce a virtual world, the constructed road must blend
well into its environment. For instance, the road should pass on a
bridge when surrounded by water. We can also imitate real-world
road-building constraints, and chose a path for the road that will
minimise costs (Galin et al., 2010). Roads can even be created to
form a hierarchical network (Galin et al., 2011). Reconstructed
roads are nice looking and blend well into the terrain, but they do
not match reality. That is, they only exist in the virtual world.

The aim may also be to create a road network as the base layout
of a city. Indeed, stemming from the seminal work of (Parish
and Muller, 2001), a whole family of methods first creates a road
network procedurally, then creates parcels and extrudes these to
create a virtual city. These methods are very powerful and ex-
pressive, but they may be difficult to control (that is, to adapt
the method to get the desired result). Other works focus on con-
trol method (Chen et al., 2008, Lipp et al., 2011, Beneš et al.,
2014). Those methods suffer from the same drawback; they are
not directly adapted to model reality.

More generally, given procedural generation methods, finding the
parameters so that the generated model will match the desired
result is still an on-going research (inverse procedural modelling,
like in (Martinovic and Van Gool, 2013) for façade, for instance).

We start from rough GIS data (Paris road axis); thus, our modelling
is based on a real road network. Then, we use a basic hypothesis
and a simple road model to generate more detailed data. At this
point, we generate street data for a large city (Paris); the result is
one street network model. We use a widespread street network
model, where the skeleton is formed by street axis and intersection
forming a network. Then other constituents (lane, pedestrian cross-
ing, markings, etc.) are linked to this network. We base all our
work on a Relational DataBase Management System (RDBMS),
to store inputs, results, topology, and processing methods.

This article follows the IMRAD format ((Wu, 2011)). In Section 2.
we explain why we chose to base our work on a RDBMS, and
explain the hypothesis, how we generate the road surface, and how
the parameters of the resulting model can be edited. In Section 3.
we provide results of street generation and results of editing. In

Figure 1: StreetGen in a glance. Given road axes, reconstruct network, find corner arcs, compute surfaces, add lanes and markings.

Section 4., we discuss the results and present limitations and
possible improvements.

2. METHOD

2.1 Introduction to StreetGen

Spatial
analysis

Road
axis Road

axis
network

StreetGen

Hypothesis
Street Data

model

Streets
modeling

RDBMS

Visualisation

Traffic
simulation

Figure 2: StreetGen workflow.

The design of StreetGen is a result of a compromise between
theoretical and practical considerations. StreetGen amplifies data
using a simple, yet strong hypothesis. As such, the approach is
to attain correct results when the hypothesis appears correct and
change the method to something more robust when the hypothesis
appears wrong, so as to always have a best guess result.

Second, StreetGen has been designed to work independently at
several different scales. It can generates street data at the city scale.
The exact same method also generates street data interactively at
the street scale.

Lastly, StreetGen results are used by different applications (visual-
isation, traffic simulation, and spatial analysis). As such, the result
is a coherent street data model with enforced constraints, and we
also keep links with input data (traceability).

2.2 Introduction to RDBMS

We chose to use a RDBMS ((PostgreSQL, 2014) with (PostGIS,
2014)) at the heart of StreetGen for many reasons. First, RDBMSs
are classical and widespread, which means that any application
using our results can easily access it, whatever the Operating
System (OS) or programming language. Second, RDBMSs are
very versatile and, in one common framework, can regroup our
input GIS data, a road network (with topology), the resulting
model of streets, and even the methods to create it. Unlike file-
based solutions, we put all the data in relation and enforce these
relations. For instance, our model contains surfaces of streets that
are associated with the corresponding street axis. If one axis is
deleted, the corresponding surface is automatically deleted. We
push this concept one step further, and link result tables with input
tables, so that any change in input data automatically results in

updating the result. Lastly, using RDBMS offers a multi OS, multi
GIS (many clients possible), multi user capabilities, and has been
proven to scale easily. We stress that the entirety of StreetGen is
self contained into the RDBMS (input data, processing methods,
and results).

2.3 StreetGen Design Principles

Input of StreetGen We use few input data, and accept that these
are fuzzy and may contain errors.
The first input is a road axis network made of polylines with an
estimated roadway width for each axis. We use the BDTopo1

product for Paris in our experiment, but this kind of data is avail-
able in many countries. It can also be reconstructed from aerial
images (Montoya-Zegarra et al., 2014), Lidar data (Poullis and
You, 2010), or tracking data (GPS and/or cell phone) (Ahmed et
al., 2014).
Using the road axis network, we reconstruct the topology of the
network up to a tolerance using either GRASS GIS ((Neteler et
al., 2012)) or directly using PostGIS Topology. We store and use
the network with valid topology with PostGIS Topology.
The second input is the roughly estimated average speed of each
axis. We can simply derive it from road importance, or from road
width (when a road is wide, it is more likely that the average speed
will be higher).
The third input is our modelling of streets and the hypothesis we
create.

Because the data we need can be reconstructed and there is a low
requirement on data quality, our method could be used almost
anywhere.

Street data model Real life streets are extremely complex and
diverse; we do not aim at modelling all the possible streets in all
their subtleties, but rather aim at modelling typical streets with a
reasonable number of parameters.

First, we observe that street and urban objects are structured by
the street axis. For instance, a pedestrian crossing is defined with
respect to the street axis. At such, we centre our model on street
axes.

Second, we observe that streets can be divided into two types
: parts that are morphologically constant (same roadway width,
same number of sidewalks, etc.), and transition parts (intersection,
transition when the roadway width increases or decreases).
We follow this division so that our street model is made of morpho-
logically constant parts (section) and transition parts (intersection).
The separation between transition and constant parts is the sec-
tion limit and is expressed regarding the street axis in curvilinear
abscissa.

Third, classical streets are adapted to traffic, which means that a
typical vehicle can safely drive along the street at a given speed.

1http://professionnels.ign.fr/bdtopo

http://professionnels.ign.fr/bdtopo

Figure 3: Street data model.

This means that cornerstone in an intersection does not form sharp
right turns that would be dangerous for vehicle tires. The most
widespread cornerstone path in this case seems to be the arc of
a circle, as it is the easiest form to build during public work.
Therefore, we consider cornerstone path to be either a segment or
the arc of a circle. This choice is similar to (Wilkie et al., 2012)
and is well adapted to the city, but not so well adapted to peri-
urban roads, where the curve of choice is usually the clothoid (like
in (McCrae and Singh, 2009b)), because it is actually the curve
used to build highways and fast roads.

The surface of intersection is then defined by the farthest points
on each axis where the border curve starts. In this base model, we
add lanes, markings, etc.

Figure 4: 3 different radius size (3m, 4.9m, 7.6 m) for streets of
various importancy, from real Paris data

Kinematic rule of thumb We propose basic hypotheses to at-
tempt to estimate the radius of the corner in the intersection. We
emphasise that these are rules of thumb that give a best guess
result reasonably close to, and does not mean that the streets were
actually made following these rules (which is false for Paris for
instance).

Our first hypothesis is that streets were adapted so that vehicles
can drive conveniently at a given speed s that depends on the street
type. For instance, vehicles tend to drive more slowly on narrow
residential streets than on city fast lanes.
Our second hypothesis is that given a speed, a vehicle is limited
in the turns it can make. Considering that the vehicle follows an
arc of circle trajectory, a radius that is too small would produce a
dangerous acceleration and would be uncomfortable. Therefore

we are able to find the radius r associated with a driving speed s
through an empirical function f(s)− > r. This function is based
on real observations of the French organisation SETRA (SETRA,
2006).

From our street data model and these kinematic rules of thumb,
we deduce that if we roughly know the type of road, we may be
able to roughly estimate the speed of the vehicles on it. From
the speed, we can estimate a turning radius, which leads to the
roadway geometry.

Schematically, we consider that a road border is defined by a
vehicle driving along it at a given speed, while making comfortable
turns.

2.4 Robust and Efficient Computing of Arcs

Goal The hypotheses in the above section allow us to guess a
turning radius from the road type. This turning radius is used to re-
construct the arcs of a circle that limits the junctions. The method
must be robust because our hypotheses are just best guesses and
are sometime completely wrong.

Given two road axis (a1, a2) that are each polylines, and not
segments), having each an approximate width (w1, w2) and an
approximate turning radius (r = min(r1, r2), or other choosing
rule), we want to find the centre of the arc of the circle that a
driving vehicle would follow.

a1

a2

w1

w2
I

circle
center

r

I I
1

I
2

Figure 5: Finding the circle centre problem. Left classical problem,
middle and right using real-world data.

Method Our first method was based on explicit computing, as
in (Wang et al., 2014), Figure 13. However, this method is not
robust, and has special cases (flat angle, zero degree angle, one
road entirely contained in another), is intricately two-dimensional

Figure 6: The method to robustly find circle centres.

(2D), and, most importantly, cannot be used on poly-lines. Yet real-
world data is precisely made of polylines, due to data specification
or errors.

We choose to use morphological and boolean operations to over-
come these limitations. Our main operators are positive and nega-
tive buffers (formally, the Minkowski sum of the input with a disk
of given size) as well as the surface intersection, union, etc.

We are looking for the centre of the arc of the circle. Thus, by
definition the centre could be all the places of distance of d1 =
w1 + r from a1 and distance of d2 = w2 + r from a2.
We translate this into geometrical operations:

bufferi, buffer of ai with di
inter, the intersection of boundary of buffers, which is com-

monly a set of point but can also be a set of points and curve.
All those place could be circle centre.

closest, the point of inter that is the closest to the junction
centre. We must filter this among the candidates in order
to keep only the one that makes the most sense, given our
hypotheses.

When hypothesis are wrong In some cases closest may be
empty (when one road is geometrically contained in another con-
sidering their width for instance). In this case our method fails
with no damages, as no arc is created.
The radius may not be adapted to the local road network topology.
This predominantly happens when the road axis is too short with
respect to the proposed radius. In this case, we reduce the guessed
radius to its maximal possible value by explicitly computing the
maximum radius if possible.
It also happens that the hypotheses regarding the radius are wrong,
which creates obviously misplaced arcs. We chose a very simple
option to estimate whether an arc is misplaced or not and simply
use a threshold on the distance between the arc and the centre of
the intersection. In this case, we set the radius to a minimum that
corresponds to the Paris lane separator stone radius (0.15 m).

2.5 Computing Surfaces from Arc Centres

Figure 7: Finding border points from arcs

Border points Once the centre of circle is found, we can create
the corresponding arc of circle by projecting the centre of the
circle on both axis buffered by wi. In fact, we do not use a
projection, as a projection on a polyline may be ill-defined (for
instance projecting on the closest segment may not work). Instead,
we take the closest point.

Similarly, we ’project’ the circle centre onto the road axis. We
call these projection candidate border points. We have two or
less border points per axis per intersection. According to our
intersection surface model, we only keep one of the candidates per
axis per intersection, choosing the candidate that is the farthest
from the intersection centre. We define the distance from the
intersection centre by using the curvilinear abscissa, which is
necessary because, in some odd cases, the Euclidian distance may
be misleading.

I
border point

border line

estimated normal

Figure 8: Creating the border line by cutting the section with local
estimation of normal.

Section and intersection surface We compute the section sur-
face by first creating border lines at the end of each section out
of border points. The border lines are normal to a local straight
approximation of the road axis. Then, we use these lines to cut the
bufferised road axis to obtain the section surface.

At this point, it would be possible to construct the intersection
surface by linking border lines to arcs, passing by the buffered
road axis when necessary. We found it too difficult to do it robustly
because some of the previous results may be missing or slightly
false due to bad input data, wrong hypotheses or a computing
precision issue.

We prefer a less specific method. We build all possible surfaces
from the line set comprised of arcs, border lines, and buffered
roads. We then keep only the surface that corresponds to the
intersection.

Figure 9: Variable buffer for robust roadway width transition.

Variable buffer In the special case where the intersection is
only a changing of roadway width, the arc of the circle transition
is less realistic than a linear transition. We use a variable buffer
to do this robustly. It also offers the advantage to being able to
control the three most classical transitions (symmetric, left, and
right) and the transition length using only the street axis.

We define the variable buffer as a buffer whose radius is defined at
each vertex (i.e., points for linestring). The radius varies linearly
between vertices. One easy, but inefficient solution to compute
it is to build circles and isosceles trapezoids and then union the
surface of these primitives.

Lane, markings, street objects Based on the street section,
we can build lanes and lane separation markings using a buffer.
Note that simply translating the centre axis would not work with
polylines.

Figure 10: Starting from center line (black), a translation would
not create correct a lane (red). We must use the buffer (green).

Our input data contains an estimation of the lane number. Even
when such data is missing, it can still be guessed from road width,
road average speed, etc., using heuristics. The number of lane
could also be retrieved from various remote sensing data. For
instance, (Jin et al., 2009) propose to use aerial images. We can
also build pedestrian crossings along the border lines. Using
intersection surfaces, we build city blocks. We use the topology of
the road network to obtain the surface of the face corresponding
to the desired block. Then, we use Boolean operations to subtract
the street and intersection surfaces from the face. This has the
advantage that this still provides results when some of the street
limiting the block have not been computed.

2.6 Concurrency and scaling

One big query We emphasize that StreetGen is one big SQL
query (using various PL/pgSQL and Python functions).
The first advantage it offers is that it is entirely wrapped in one
RDBMS transaction.This means that, if for any reason the output
does not respect the constraints of the street data model, the result
is rolled back (i.e., we come back to a state as if the transaction
never happened). This offers a strong guarantee on the resulting
street model as well as on the state of the input data.

Figure 11: The blocks are generated even when some parts of the
street network have not been computed.

Second, StreetGen uses SQL, which naturally works on sets (in-
trinsic SQL principle). This means that computing n road surfaces
is not computing n times one road surface. This is paramount
because computing one road surface actually requires using its
one-neighbours in the road network graph. Thus, computing each
road individually duplicates a lot of work.

Third, we benefit from the PostgreSQL advanced query planner,
which collects and uses statistics concerning all the tables. This
means that the same query on a small or big part of the network
will not be executed the same way. The query planner optimises
the execution plan to estimate the most effective one. This, along
with extensive use of indexes, is the key to making StreetGen work
seamlessly on different scales.

One coherent streets model results One of the advantage of
working with RDBMSs is the concurrency (the capacity for several
users to work with the same data at the same time).
By default, this is true for StreetGen inputs (road network). Several
users can simultaneously edit the road axis network with total
guarantees on the integrity of the data.

However, we propose more, and exploit the RDBMS capacities so
that StreetGen does not return a set of streets, but rather create or
update the street modelling.
This means that we can use StreetGen on the entire Paris road axis
network, and it will create a resulting streets modelling. Using
StreetGen for the second time on only one road axis will simply
update the parameters of the street model associated with this axis.
Thus, we can guarantee at any time that the output street model is
coherent and up to date.

Computing the street model for the first time corresponds to using
the ‘insert’ SQL statement. When the street model has already
been created, we use an ‘update’ SQL statement. In practice, we
automatically mix those two statements so that when computing
a part of the input road axis network, existing street models are
automatically updated and non existing ones are automatically
inserted. The short name for this kind of logic (if the result does
not exist yet, then insert, else update) is ‘upsert’.

This mechanism works flawlessly for one user but is subject to
the race condition for several users. We illustrate this problem
with this synthetic example. The global streets modelling is empty.
User1 and User2 both compute the street model si corresponding
to a road axis ri. Now, both users upsert their results into the
street table. The race condition creates an error (the same result is
inserted twice).

We can solve this race problem with two strategies. The first
strategy is that when the upsert fails, we retry it until the upsert

User1 User2result
table

s_i exists?

no

insert s_i

empty

s_i s_i exists?

update s_i

yes

User1 User2result
table

s_i exists?

no

insert s_i

empty

s_i

s_i exists?

insert s_i

no

error, s_i
already exists

Figure 12: Left, a classical upsert. Right, race condition produces
an error.

is successful. This strategy offers no theoretical guarantee, even
if, in practice, it works well. We choose a second strategy, which
is based on semaphore, and works by avoiding computing streets
that are already being computed.

When using StreetGen on a set of road axes, we use semaphores
to tag the road axes that are being processed. StreetGen only
considers working on road axes that are not already tagged. When
the computing is finished, StreetGen releases the semaphore. Thus,
any other user wanting to compute the same road axis will simply
do nothing as long as those streets are already being computed by
another StreetGen user. This strategy offers theoretically sound
guarantees, but uses a lot of memory.

3. RESULTS

3.1 StreetGen

Robustness Overall, StreetGen generates the entire Paris road
network. We started by generating a few streets, then a few blocks,
then the sixth arrondissement of Paris, then a fourth of Paris,
then the entire south of Paris, then all of Paris. Each time we
changed scale, we encountered new special cases and exceptions.
Each time we had to robustify StreetGen. We think it is a good
illustration of the complexity of some real-life streets and also of
possible errors in input data.

Quality Overall, most of the Paris streets seem to be adapted to
our street data model. StreetGen results looks primarily realistic,
even in very complex intersections, or overlapping intersections.

Figure 13: Example of results of increasingly complex intersec-
tion.

Results are un-realistic in a few borderline cases, either because
of the hypotheses or the limitations of the method. Those case are,
however, easily detected and could be solved individually. Failure

1 2

Figure 14: Various cases of failure from more severe to less severe
(1 , 2 , 3). 1 : loop, 2 : bad buffer use, 3 : radius too big for
network.

1 is caused by the fact that axis 1 and 2 form a loop. Thus, in some
special cases, the whole block is considered an intersection. This
is rare and easy to detect. Failure 2 is caused by our method of
computing intersection surface. It could be dealt with using the
variable buffer. Failure 3 is more subtle and is because one axis
is too short with respect to the radius. It could be fixed by taking
into consideration the next axis with roughly the same direction,
but it would introduce special cases.

We compared the result of StreetGen with the actual roadways of
Paris, which are available through Open Data Paris2. It clearly
shows the limit of the input data, chiefly in roadway width estima-
tions. Using interactive tools, it is possible to update the input

Figure 15: The estimated parameters may be far from reality (Left).
It is, however, possible to manually or automatically fit the street
model.

data so that it is closer to the reality, until a very good match is
reached.

Scaling The entire Paris street network is generated in less than
10 minutes (1 core). Using the exact same method, a single street
(and its one-neighbour) is generated in ∼ 200ms, thus is lower
than the human interactive limit of ∼ 300ms.

SQL set operations We illustrate the specificity of SQL (work-
ing on set) by testing two scenarios. In the first scenario (no-
set), we use StreetGen on the Paris road axis one-by-one, which
would take more than 2hours to complete. In the second scenario
(set), we use StreetGen on all the axis at once, which takes about
10minutes.

Concurrency We test StreetGen with two users simultaneously
computing two road axis sets sharing between 100% and 0% of
road axis. The race condition is effectively fixed, and we get the
expected result.

Parallelism We divided the Paris road axis network into eight
clusters using the K-means algorithm3 on the road axis centroid.

2http://opendata.paris.fr/page/home/
3http://scikit-learn.org/stable/modules/generated/

sklearn.cluster.KMeans.html

http://opendata.paris.fr/page/home/
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

This happens within the database in a few seconds. Then K users
use StreetGen to compute one cluster (parallelism), which reducez
the overall computing time to about one minute.

Figure 16: Clustering road axis centroid with K-Means, K=20,
(black segments are convex hull).

4. DISCUSSION

Street data model Our street data model is simple and repre-
sents well the roadway, but would need to be detailed in some
aspects.
First, parking places are very abundant and important in Paris
street organisation, yet our model cannot specifically deal with
these.
Lanes are not a priority at the moment, and cannot have different
width nor type (bus lanes, bicycle lanes, etc.).
Our model is just the first step towards modelling streets. In par-
ticular, we do not integrate any urban objects in it. We could
easily extend our street data model to add street objects positioned
regarding the distance to the roadway and a curvilinear abscissa
along the street axis as well as oriented with respect to the street
axis.

Kinetic hypothesis Overall, kinetic hypotheses provide realistic
looking results, but are far from being true in an old city like Paris.
Indeed, a great number of streets pre-date the invention of cars. We
attempted to find a correlation between real-world corner radius
(analysing OpenDataParis through Hough arc of circle detection)
and the type of road or the road’s average speed (from a GPS
database). We could not find a clear correlation, except for fast
roads; On those roads, the average speed is higher, and they have
been designed for vehicles following classical engeneering rules.

Precision issue All our geometrical operations (buffer, Boolean
operations, distances, etc.) rely on PostGIS (thus GEOS4). We
then face computing precision issues, especially when dealing
with arcs. Arc is a data type that is not always supported, and thus
it must be approximated by segments.

StreetGen uses various strategies to try to work around these
issues. However the only real solution would be to use an exact
computation tool like CGAL (The CGAL Project, 2015). It would
also allow us to compute the circle centres in 3D.

Fitting street model to reality StreetGen was designed from
the beginning to provide a best guess of streets based on very little
information. However, in some cases, we want the results to better
fit reality.
For this, we created interactive behaviour so that several users can
fit the automatic StreetGen results to better match reality (using

4http://trac.osgeo.org/geos/

Figure 17: Example of a precision issue. Left, we approximate
arcs with segments, which introduces errors. Right, the error was
sufficient to incorrectly union the intersection surface.

aerial images as ground truth). We did not created a Graphical User
interface (GUI), but rather a set of automatic in-base behaviours so
that editing input data or special interaction layers can interactively
change the StreetGen results. Doing so ensures that any GIS
software that can read and write PostGIS vector can be used as
StreetGen GUI.
In some cases, we may have observations of street objects or
sidewalks available, possibly automatically extracted from aerial
images or Lidar, and thus imprecise and containing errors. We
tested an optimisation algorithm that distorts the street model from
best-guess StreetGen to better match these observations.

This subject is similar to Inverse Procedural Modeling, and we
feel it offers many opportunities.

5. CONCLUSION

As a conclusion, we proposed a relatively simple street model
based on a few hypotheses. This street data model seems to
be adapted to a city as complex as Paris. We proposed various
strategies to use this model robustly. We showed that the RDBMS
offers interesting possibilities, in addition to storing data and
facilities for concurrency. Our method StreetGen has ample room
for improvements. We could use more sophisticated methods
to predict the radius, better deal with special cases, and extend
the data model to better use lane and add street objects. In our
future work, we also would like to exploit the possibility of the
interaction of StreetGen to perform massive collaborative editing.
Such completed street modelling could be used as ground truth
for the next step, which would be an automatic method based on
detections of observations like sidewalks, markings, etc. Finding
the optimal parameters would then involve performing Inverse
Procedural Modelling.

6. ACKNOWLEDGEMENTS

The authors would like to thank reviewers for their suggestions,
and colleagues for ideas and help, in particular G. Le Meur. This
work was supported in part by an ANRT grant (20130042).

REFERENCES

Ahmed, M., Karagiorgou, S., Pfoser, D. and Wenk, C., 2014. A
comparison and evaluation of map construction algorithms using
vehicle tracking data. Geoinformatica 19(3), pp. 601–632. 2

Beneš, J., Wilkie, A. and Křivánek, J., 2014. Procedural modelling
of urban road networks. Computer Graphics Forum 33(6), pp. 132–
142. 1

http://trac.osgeo.org/geos/

Chen, G., Esch, G., Wonka, P., Müller, P. and Zhang, E., 2008.
Interactive procedural street modeling. ACM Trans. Graph. 27(3),
pp. Article 103: 1–10. 1

Coughlan, J. M. and Yuille, A. L., 1999. Manhattan world: Com-
pass direction from a single image by bayesian inference. In:
Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, Vol. 2, IEEE, pp. 941–947. 1

Galin, E., Peytavie, A., Guérin, E. and Beneš, B., 2011. Author-
ing hierarchical road networks. In: Computer Graphics Forum,
Vol. 30, pp. 2021–2030. 1

Galin, E., Peytavie, A., Maréchal, N. and Guérin, E., 2010. Proce-
dural generation of roads. In: Computer Graphics Forum, Vol. 29,
pp. 429–438. 1

Jin, H., Feng, Y. and Li, Z., 2009. Extraction of road lanes
from high-resolution stereo aerial imagery based on maximum
likelihood segmentation and texture enhancement. In: Digital
Image Computing: Techniques and Applications, 2009., IEEE,
Melbourne, pp. 271–276. 5

Lipp, M., Scherzer, D., Wonka, P. and Wimmer, M., 2011. Inter-
active modeling of city layouts using layers of procedural content.
In: Computer Graphics Forum, Vol. 30, pp. 345–354. 1

Martinovic, A. and Van Gool, L., 2013. Bayesian grammar learn-
ing for inverse procedural modeling. In: CVPR, 2013, IEEE,
pp. 201–208. 1

McCrae, J. and Singh, K., 2009a. Sketch-based path design. In:
Proceedings of the Graphics Interface 2009 Conference, Cana-
dian Information Processing Society, Kelowna, British Columbia,
Canada, pp. 95 – 102. 1

McCrae, J. and Singh, K., 2009b. Sketching piecewise clothoid
curves. Comput. Graph. 33(4), pp. 452–461. 3

Montoya-Zegarra, J. A., Wegner, J. D., Ladicky, L. and Schindler,
K., 2014. Mind the gap: modeling local and global context in
(road) networks. In: German Conference on Pattern Recognition
(GCPR), p. 212 to 223. 2

Neteler, M., Bowman, M., Landa, M. and Metz, M., 2012. GRASS
GIS: a multi-purpose open source GIS. Environ. Model. Softw.
31, pp. 124–130. 2

Nguyen, H., Desbenoit, B. and Daniel, M., 2014. Realistic road
path reconstruction from GIS data. Computer Graphics Forum
33(7), pp. 259–268. 1

Parish, Y. I. H. and Muller, P., 2001. Procedural modeling of
cities. In: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 301–308. 1

PostGIS, d. t., 2014. PostGIS. http://postgis.net/. 2

PostgreSQL, d. t., 2014. PostgreSQL. http://www.

postgresql.org/. 2

Poullis, C. and You, S., 2010. Delineation and geometric modeling
of road networks. ISPRS Journal of Photogrammetry and Remote
Sensing 65(2), pp. 165–181. 2

SETRA, 2006. comprendre les principaux parame-
tres de conception geometrique des routes. http:

//catalogue.setra.fr/documents/Cataloguesetra/

0004/Dtrf-0004044/DT4044.pdf. 3

The CGAL Project, 2015. CGAL User and Reference Manual.
4.6 edn, CGAL Editorial Board. 7

Wang, J., Lawson, G. and Shen, Y., 2014. Automatic high-fidelity
3d road network modeling based on 2d GIS data. Advances in
Engineering Software 76, pp. 86–98. 1, 3

Wilkie, D., Sewall, J., Lin, M. C. and Lin, M. C., 2012. Transform-
ing GIS data into functional road models for large-scale traffic
simulation. IEEE Trans. Vis. Comput. Graph. 18(6), pp. 890–901.
1, 3

Wu, J., 2011. Improving the writing of research papers: IMRAD
and beyond. In: Landsc. Ecol., Vol. 26number 10, pp. 1345 –
1349. 1

Yeh, A. G., Zhong, T. and Yue, Y., 2015. Hierarchical polygo-
nization for generating and updating lane-based road network
information for navigation from road markings. Int. J. Geogr. Inf.
Sci. pp. 1–25. in press. 1

http://postgis.net/
http://www.postgresql.org/
http://www.postgresql.org/
http://catalogue.setra.fr/documents/Cataloguesetra/0004/Dtrf-0004044/DT4044.pdf
http://catalogue.setra.fr/documents/Cataloguesetra/0004/Dtrf-0004044/DT4044.pdf
http://catalogue.setra.fr/documents/Cataloguesetra/0004/Dtrf-0004044/DT4044.pdf

	Introduction
	Method
	Introduction to StreetGen
	Introduction to RDBMS
	StreetGen Design Principles
	Robust and Efficient Computing of Arcs
	Computing Surfaces from Arc Centres
	Concurrency and scaling

	 Results
	StreetGen

	 Discussion
	Conclusion
	Acknowledgements

